序列的周期性:
对于一个序列中所有的n存在一个最小的正整数T,使得x(n)=x(n+T) -∞则称该序列x(n)为周期序列,且周期为T
正弦序列的周期性:
x(n+T)=Asin(ωn+φ+Tω)=x(n)= Asin(ωn+φ)
则Tω=2kπ T=2kπ/ω
具体的三种情况,教材上有详细讲解,这里就不作说明了,且这个相应的视频上也有讲解
线性移不变系统及线性时不变系统,也就是系统的输出不随时间的变化而变化
线性系统满足叠加原理(及其次性和可加性),
时不变系统:就是系统的参数不随时间而变化,即不管输入信号作用的时间先后,输出信号响应的形状均相同,仅是从出现的时间不同。用数学表示为T[x(n)]=y[n]则 T[x(n-n0)]=y[n-n0],这说明序列x(n)先移位后进行变换与它先进行变换后再移位是等效的。
线性时不变系统的性质
齐次性
若激励f(t)产生的响应为y(t),则激励Af(t)产生的响应即为Ay(t),此性质即为齐次性。其中A为任意常数。
f(t)系统y(t),Af(t)系统Ay(t)
叠加性
若激励f1(t)与f2(t)产生的响应分别为y1(t), y2(t),则激励f1(t)+f2(t)产生的响
应即为y1(t)+y2(t),此性质称为叠加性。
线性
若激励f1(t)与f2(t)产生的响应分别为y1(t), y2(t),则激励A1f1(t)+A2f2(t)产生
的响应即为A1y1(t)+A2y2(t),此性质称为线性。
时不变性
若激励f(t)产生的响应为y(t),则激励f(t-t0)产生的响应即为y(t-t0),此性质称为
不变性,也称定常性或延迟性。它说明,当激励f(t)延迟时间t0时,其响应y(t)也延
迟时间t0,且波形不变。
微分性
若激励f(t)产生的响应为y(t),则激励f'(t)产生的响应即y’(t),此性质即为微分性。
积分性
若激励f(t)产生的响应为y(t),则激励f(t)的积分产生的响应即为y(t)的积分。此性质称为积分性。