二重积分的定义
设z=f(x,y)为有界闭区域(σ)上的有界函数:
(1)把区域(σ)任意划分成n个子域(△σk)(k=1,2,3,…,n),其面积记作△σk(k=1,2,3,…,n);
(2)在每一个子域(△σk)上任取一点 ,作乘积 ;
(3)把所有这些乘积相加,即作出和数
(4)记子域的最大直径d.如果不论子域怎样划分以及 怎样选取,上述和数当n→+∞且d→0时的极限存在,那末称此极限为函数f(x,y)在区域(σ)上的二重积分.记作:
即: =
其中x与y称为积分变量,函数f(x,y)称为被积函数,f(x,y)dσ称为被积表达式,(σ)称为积分区域.
关于二重积分的问题
对于二重积分的定义,我们并没有f(x,y)≥0的限.容易看出,当f(x,y)≥0时,二重积分 在几何上就是以z=f(x,y)为曲顶,以(σ)为底且母线平行于z轴的曲顶柱体的体积。
上述就是二重积分的几何意义。
如果被积函数f(x,y)在积分区域(σ)上连续,那末二重积分 必定存在。
二重积分的性质
(1).被积函数中的常数因子可以提到二重积分符号外面去.
(2).有限个函数代数和的二重积分等于各函数二重积分的代数和.
(3).如果把积分区域(σ)分成两个子域(σ1)与(σ2),即(σ)=(σ1)+(σ2),那末:
(4).如果在(σ)上有f(x,y)≤g(x,y),那末:
≤
(5).设f(x,y)在闭域(σ)上连续,则在(σ)上至少存在一点(ξ,η),使
其中σ是区域(σ)的面积.